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Abstract—A mixed variational theorem for linear orthotropic thermoelastic solids is presented. The mechanical
state variables are taken to be the displacement vector and a scalar stress variable. The Euler equations of the
variational principle are the displacement equations of equilibrium and a condition relating the stress variable
to strain and temperature change. An important feature of the principle is that the field equations for both com-
pressible and incompressible solids may be generated. In connection with applications to the development of
finite element computer algorithms for the solution of boundary value problems a well-conditioned system of
equations is obtained for nearly-incompressible solids.

INTRODUCTION

THE solution of boundary value problems in linear, isotropic elastostatics is often most
fruitfully accomplished by solving an equivalent variational problem. This technique has
been employed extensively in recent years in the development of computer algorithms
based upon a finite element Ritz method. However, applications in such fields as structural
integrity analysis for solid rocket motors have encountered difficulty as a result of the
near-incompressibility of typical solid propellants. The obstacle arises from the existence
of a singularity in the displacement equations of equilibrium for an incompressible isotropic
elastic solid, i.e. one for which Poisson’s ratio v = 0-5. Furthermore, for slightly compres-
sible materials (0-49 < v < 0-50) the variational problem does not lead to a numerically
well-behaved system of equations. For example, experience has shown that the Theorem of
Minimum Potential Energy cannot be applied to problems in which v falls within the
limits above. This difficulty can be traced to numerical instability in the inversion of the
strain—stress constitutive equation (the determinant of the elastic compliance matrix
vanishes for an incompressible solid) in the process of forming the strain energy density.
With this motivation Herrmann and Toms [1] reformulated the constitutive equations
for a linear, isotropic thermoelastic solid and later Herrmann [2] exhibited a variational
principle valid for all admissible values of Poisson’s ratio including v = 0-5. Concomitantly,
the Ritz method of finite element numerical analysis associated with the new mixed varia-
tional principle was shown to be substantially superior to the minimum potential energy
formulation [2].

A similar problem has arisen in dealing with filament-reinforced solids. For such
composite materials in which often a nearly-incompressible matrix is combined with
elastic reinforcement, the Ritz method based upon the Minimum Potential Energy Theorem
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leads to unsatisfactory results from a computational standpoint. Furthermore, the limiting
case of an incompressible composite is not obtained by a continuous transition from the
compressible ; i.e., a singularity again occurs in the problem formulation. This aspect of
the problem has recently been noticed by Shaffer [3] in formulating the displacement
equation of equilibrium for generalized plane strain of orthotropic tubes.

This paper extends the earlier work of Herrmann [2] to orthotropic thermoelastic
solids. After establishing some preliminary notation, constitutive equations valid for
compressible or incompressible solids are written; in order to effect these relations it is
necessary to retain an added mechanical dependent variable, and an additional constraint
condition. Having established the set of field equations appropriate to both compressible
and incompressible linear, orthotropic thermoelastic solids a mixed variational principle
based on the Hellinger—Reissner Theorem is stated. The Euler equations of this principle
are the same field equations and the natural boundary conditions are the appropriate
conditions to be satisfied by the surface traction and displacement vectors. From this
point on the application of the variational principle in the construction of finite element
computer algorithms for the solution of boundary value problems is well-known [4].

PRELIMINARIES

The mechanical state in a linear, orthotropic thermoelastic solid is conveniently
described by the (symmetric) stress and strain tensors 1;; and &;, respectively, and the
displacement vector u;t. For quasi-static problems the fifteen functions (components) are
found by requiring satisfaction of: the stress equations of equilibrium,

Tt fi =05 (1)

strain—displacement equations
28 = g j+u; (2)

and the constitutive equations
g; = Sijutu+a;T. (3)

In the preceding f; is the body force vector, S, , the elastic compliance tensor, «;; the thermal
expansion tensor and T the temperature change from a reference state.

For a properly posed boundary value problem there must be appended to these fifteen
equations prescribed values of the displacement or traction vector on the boundary of the
solid. For a compressible solid there is no formal difficulty in eliminating the strains from
(2) and (3) and substituting in (1) to obtain displacement equations of equilibrium. Alter-
natively, the same result can be obtained by forming the strain energy density, inserting
in the minimum potential energy functional and applying the variational operator. It is
precisely at this point (obtaining stress in terms of strain in either case) that the procedure
fails for incompressible solids. Consequently, it is necessary to modify the constitutive
equation in such a manner that inversion of the strain—stress equation is always possible,
irrespective of the compressibility of the solid. This is accomplished in the next section
through the introduction of an additional state variable.

+ State variables are referred to a fixed rectangular cartesian reference frame; the usual index notation and
summation convention is inferred.
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CONSTITUTIVE EQUATIONS FOR ORTHOTROPIC SOLIDS

In the sequel, anticipating applications to computer-oriented algorithms, it will be

convenient to employ so-called reduced notation for the stress and strain tensors, i.e.,
01 = Ty1, g3 = Tz3, €IC

(4)

€1 = &1, € = £22, Y12 = 2815, etc.

With this notation the stress and strain tensors can be represented as vectors and the
compliance tensor as a two-dimensional array. However, care must be exercised in trans-
forming these quantities to other coordinate systems. For further convenience in subsequent
use in the variational theorem the stress and strain “vectors™ are defined as

0; =(01,02,03,7T12,723,T31) (5
& = (€1, 82,83, Y12,723,V31) ©6)

The linear thermal expansion tensor is likewise written
o; = (g, %3,03,0,0,0) (7)

and the elastic compliance tensor is

[S1y Sz S5 0 0 0
Si2 S22 S35 0 O O
Si3 Sa3 S 0 0 O
Sij = (8)
0 0 0 S4 0 O
0 0 0 0 S5 O
0 0 0 0 O S66_
with this notation the constitutive equation takes the form¥
g = §;0;+o,T Lji=12,...,6 9)
and the dilatation may be written as
3 = Fg (10)
where
Fi=(1,1,1,0,0,0) (11)
Substituting (9) into (10):
9 = FS,j0;+ Fo,T (12)
= Ajo;+ Fo,T (13)
where
A; = FS;; =(A,,A;,A,,0,0,0). (14)

t It is assumed that the elastic axes of the orthotropic solid coincide with the fixed reference frame. In the
sequel, where reduced variables appear, summation is extended over the range 1,2, ..., 6 unless otherwise
stated.
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Anticipating the need to invert (9) we form the determinant of §;; as follows:
ISij] = (4i4)S44S55S66 (15)
where
347 = 822533— 533+ 8,3(S12+S13)— 512533 — 51352,
35 = 833811 —S3+S813(S12+523) = S12533— 52351, (16)
343 = 811822 — 512+ 512(813+ 523) = 513522 — 823511
For a compressible elastic solid, the strain energy density must be positive definite ; this
requires that in addition to the non-vanishing of the determinant of §;;, the principal
minors Tj; and the diagonal elements S;, of the determinant must be greater than zero
[5], ie.,
[Sif > 0, Tiy > 0, Suy >0, no sum on i. (17)
In [3] Shaffer has shown that for a (mechanically) incompressible solid,
A=A, = Ay, =0. (18)

These three equations (18) place restrictions on the cross-compliances of the solid, effectively
reducing the number of independent elastic compliances and generalizing the resultv = 0-5
for an isotropic solid.

Since 4; = 0, i = 1,2, 3, for an incompressible orthotropic solid, from (15) it is seen
that |S;} vanishes, which establishes the connection between mechanical incompressibility
and vanishing of the determinant of the compliance matrix. In the sequel in dealing with
an incompressible elastic solid we shall assume that (17) is replaced by the condition

IS;} = 0, Tiy > 0, Say > 0. (19)

Thus, for solids that are incompressible or nearly incompressible the solution of (9) for ¢; is
either not possible or numerically very sensitive. Following [1] and [2] it is desirable to
modify both the stress vector ¢; and the compliance matrix S;; so that (9) can be recastin a
form invertible for both compressible and incompressible solids. This is accomplished by
defining an additional constitutive variable and splitting the compliance matrix into two
parts. Let

o; = HF; + o} (20)
where H is a scalar variable with the dimensions of stress and o} is the difference between
the stress vector and H. (For isotropic solids o is the deviator stress). Further, set

S;; = Bij+Bi; (21)
where f;;is for the present an arbitrary matrix and B;; is the resulting modified compliance

matrix. Equation (21) is defined to be symmetric in i and j. Substituting (20) and (21) into (9)
gives

& = (B,-,-Fj+ﬂiij)H+B,~j6}‘+ﬁ,-ja}'+a,-T. (22)
In order to solve this equation for ¢ set
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This implies that

B =0 (24)
Using (23), solving for ¢¥ in (22) and substituting the result into (20}:
o; = B '(e;— o, T~ PuFH) (25)

where Bj; !, the inverse of Bj;, is temporarily assumed to exist. Since H has been introduced
in the constitutive equation as an additional variable, the dilatation equation (10) is
retained as an independent equation. Substituting (21} and (25) in (9) and the result in (10)
leads to

(Fifi;F;+ FifuBq 1ﬁlij)H‘“ FiﬁikBk_jl(gj_ajT) = 0. (26)

Equations (25) and (26) comprise the constitutive equations for incompressible and nearly
incompressible orthotropic solids.

We now take up the question of the existence of the inverse of the modified compliance
matrix, B;;. Since §;; is in diagonal form for i,j > 3, without loss of generality we set f§;;
zerofori,j > 3. Thus in considering the inverse of B;; we need consider only the upper 3 x 3
submatrix.

To satisfy (24) set
Bu \/(511522) \/;(ﬂl 11333)
Bij = B2z V(B22833) (27
symmetric B3

Next select the f;; in such a way that B;; is reduced to diagonal form. This is accomplished
by taking

VBB = Si; 1j=1,2,3

(28)
i #j, nosum
From (28)it follows that
N . .
ﬁf;=—§‘~i‘ nosum: ij k=123 i#j#k (29)
i
Substituting (29) into (21) the modified compliance matrix can now be written
[ T3 ]
T 0 0
S23
T
B, = -2 0 (30)
Si3
Tis
L Siz

where T;; are the primary minors of §;;. Furthermore, in the limiting case of incompres-
sibility the vanishing of the determinant of S;; implies that the primary minors are all
numerically equal [6]. In the present case

T13 =—T, = —Tzs = Tu (31)
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where from (19) T, is greater than zero. Finally it follows from (30) and (31) that the inverse
of the modified compliance matrix can be written

S,; O 0
1
Tll

0 0 Si

Equation (32) establishes the existence of B;; ' in the incompressible case.
We now return to the general formulation for both compressible and incompressible
solids, specializing the results for the case of isotropy. Equation (8) now takes the form

! 1 y ]
— — 0 0O
1+v 14+v 1+4v
1 v
— 0 0 0
1+v 1+4v
1 1
o 2u 1+v 000
symmetric 2 00
20
L 2 -

where v, u are Poisson’s ratio and shear modulus, respectively. Thus

14
2u(1 +v)

ﬂij = - FiFj

and
B,';l - (,u +F(,)F(J)u)5(,,) no sum
From these results it is easily shown that (25) and (26) reduce to
3vH

0; = ﬂ[£i+F(i)£(i)_2FiaT]+m F; (33)
and
3(1-2v)
2u(9—3aT)— A5 H= (34)

which apart from a constant multiplying H have been previously given in [1], [2].

. A VARIATIONAL THEOREM

Having recast the constitutive equation into a form valid for both compressible and
incompressible orthotropic elastic solids, i.e. (25), it is possible to return to the equilibrium
equations (1) and strain—displacement equations (2) and obtain the equations of equilibrium
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in terms of displacements and the H variable. These equations, along with the constraint
condition (26) and suitable boundary conditions, define a boundary value problem.
Alternatively, the boundary value problem can be defined by a variational principle
whose Euler equations and natural boundary conditions are the equilibrium equations,
dilatation condition and boundary conditions respectively. The variational principle for
the present case as well as the previously obtained result for isotropic materials [2], is a
special case of the Hellinger—Reissner Theorem, the functional of which can be written

J{t,ut = L [(W(tij)— e+ fa] dv+ J; fu;ds+ f tiu;— ;) ds (35)
In (35) W(z,;;) is the complementary energy density, f; is the surface traction vector prescribed
over the part of the surface S,, #; is the displacement vector prescribed over the part of the
surface S, and the strain—displacement equations are assumed to be satisfied. The mechan-
ical state that satisfies the stress equations of equilibrium and the strain-stress equations
is given by

8J =0 (36)

where 7;; and y; are varied independently. The state variables 7;; and u; are assumed to be of
class C" and C® respectively.t In the present context the functional in (35) is modified
as follows : the stress—strain relations are assumed to be satisfied, excepting the variable H,
and the displacement vector u; meets the prescribed boundary conditions on S,. Accord-
ingly, the functional can be expressed in terms of H and u; and the surface integral over S,
vanishes. To facilitate writing the functional in (35) in terms of reduced variables it is
necessary to introduce a set of reduced strain—displacement equations. Accordingly, we
define a matrix operator D;; through

g = Djju; i=12,...,6: j=12,3 37
where
- -
— 0 0
0x4
G,
0O — 0
axZ
o o °
5x3
Dij = (38)
0 i 0
Ox, Ox,
0 0
O & g
5} 0
- 0 =
B 6x3 axl B

+ When the variational principle is utilized in connection with the finite element method, weaker restrictions
on the state variables may be allowed. In this connection see [2].
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Returning to (35), noting that
W(Ii}'}_ ‘[,'}'8,'}' == %ngGiO‘j-i-O'gO(gT-- G,

we can express the functional in terms of H, u; using (25) and {37):

J‘{ Houj = — J { Bi; 1[%(Dimum)(Djnun) - aiTDjnun - ﬁikaHDjnun + ﬂikaHTaj
B

‘{"%ﬁfkﬁﬂFkF;Hz] +%18i}'FiFjH2 -—ﬁu,-} dU -+ J filli ds. (39)

T

Substituting (39) into (36) and executing the variation, (using the symmetry of B;; ')
- f {[Bij '(— BucFkD ity + PuFrat; T+ Fufiifp;F H) + Fif; ;F;HY 6H
B
+ {Bl; 1(Dimum - cxijﬁ'—_ ggikaH)Djnéun] ——j;,éun} dv (40)

+f t,ou,ds =0 Lji=12,...,6: mn=123

T

In order to simplify the term in the second square bracket note that
B {(Diptty— o T— By FH) = 0. 41
This expression can be placed in a form suitable for application of the Divergence Theorem
by using the identity
0 D0ty = [TpnOUy) o — Toun mOUy (42)
where 1, is the symmetric stress tensor
0y 0, Og
Tmn = | 04 02 Os (43)
Gy OG5 03

Accordingly, using (41), (42) in the second square bracket of (40) and applying the Diver-
gence Theorem leads to

- J (6D ,0U, — frou,] dv = — J TrunVmOUy A5 + f (Tommm + fo)OUy, dv (44)
B B

i3

Using this result (40) can be written

f {TEQ. (26)I6H + [tomm+ f150n} dv + j (s Twn¥)dtty ds = O. 4s)
B

T

Appealing to the usual lemma of the calculus of variations, the independent vanishing of the
bracketed expressions multiplying 0H and du, is equivalent to the dilatation condition {26)
and the stress equations of equilibrium (or displacement equations of equilibrium if (41),
{43) are used). Furthermore vanishing of the surface integral is equivalent to satisfaction of
the traction boundary condition. In the special case of isotropy (45) reduces to the result
obtained in [2].
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AbcrpakT—IIpUBOANTCS CMEUIaHYIO BAPUALIMOHHYIO TEOPEMY HJsA JIMHEHHOTO OPTOTPOMHOIO TEPMOYD-
pyroro TBepmoro Ttena. IlepeMeHHbie MEXaHMYECKOTO COCTOSIHMS SBIAIOTCA TNEPEMEHHBIMU BEKTOpa
nepeMeLLeHn 1 cKajlapa HampsokeHwui. Y paBHeHus Jiiepa IS BAPHALMOHHOIO MPHHIMIA OKa3bi{BAIOTCH
YPaBHEHHAMY NEPEMElIEHUs PABHOBECUS U YCIOBHEM OTHOILEHHS NEPEMEHHOM HalIPAXEHHA K M3MEHEHHIO
nebopmalu 4 TeMIepaTypbl. BaxHoi O0COOEHHOCTBIO MPHHUMIA SBASETCA QAKT, YTO ypaBHEHHs IO
TaK AJI COKMMAEMBIX, KaK U IS HECKMMAEMBIX TelT, MOXHO 00061MTh. B CBA3M ¢ IPUMEHEHHAMH pa3pab-
OTKH aNropuMOB KOHEYHOTO 3IE€MEHTA MAJfl BBIYUCJIMTENbHBIX MALIMH, C LEJbIO IONYYECHHs DelleHMS
KpaeBbiX 3aaa4, oNnpemenseTcs HaanexauwuMu obpa3om o0ycnoBeHHas CHCTEMa YPAaBHEHHM HJis MOYTH
HEC)KHMAEMBIX TeIl.



